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:J( component control for large scale hereditary systems, has been developed. The
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W basic problem considered is how to add constraints to the component objectives J
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system operators and the analysis of optimization problems. This work has
»f-f_ been reported in papers entitled: ’J“‘Decentnlized Control for Large Scale
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' other related work geometric, algebraic, and greph theoretic properties of
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CONTROL COORDINATION FOR HEREDITARY SYSTEMS
INTERIM REPORT

July 1, 1984 - July 1, 1985

Decentralized Control. A decentralized control strategy, which allows some
level of autonomous component control for large scale hereditary systems,
has been developed. The basic problem considered is how to add constraints
to the component objectives and to arrange exchanges of information which
enable all components to achieve their objectives. The approach requires
that component interactions be suitably limited so that variational methods
can be used to determine component controls independently. A reproducing
kernel Hilbert space of Hellinger integrable functions provides the setting
for the description of system operators and the analysis of optimization
problems. See the attached papers "Decentralized control for large scale
hereditary systems" and "Control coordination for large scale systems" for
details.

In related work geometric, algebraic, and graph theoretic properties
of system matrices have been characterized which allow some autonomy in the
choice of component control laws. See the attached paper "Canonical forms
for decentralized control" for details.

Stochastic Systems. Reproducing kernel Hilbert space methods have produced
useful approximations for estimation and control problems of deterministic
linear herediatary systems. By obtaining explicit reproducing kernel
Hilbert space representations of stochastic processes governed by linear
hereditary dynamics as spaces of Hellinger intergrable functions such
approximation methods apply to the problem of finding the covariance kernel
given the model. These results appear in the attached paper "RKH space
methods for approximating the covariance kernels of a class of stochastic
linear hereditary systems, II".

Activities partially supported by Grant AFOSR-84-0236

1) Both principal investigators attended the 1984 Mathematical Sciences
' Lecture Series, Inference for stochastic processes of semi-martingale
type, John Hopkins University, July 16-20, 1984.

2) Both principal investigators attended the AMS-IMS-SIAM Summer Research
Conference in the Mathematical Sciences, Linear Algebra and its Role in
Systems Theory, Bowdoin College, Brunswick, Main, July 29-August 4,
1984,

3) Both principal investigators attended the Southeastern Atlantic
Regional Conference on Differential Equations, Winston Salem, North
Carolina, October 12-13, 1984,

a) R. Fennell gave a contributed paper "Control Coordination",.
b) J. Reneke gave a contributed paper "A 'checkable' condition for
controllability of linear hereditary systems.
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4) R. Fennell gave a contributed paper "Control coordination for large
scale linear systems" at the SIAM Conference on Applied Linear Algebra,
Raleigh, North Carolina, April 29-May 2, 1985.

5) J. Reneke gave a contributed paper "RKH space methods for approximating
the covariance kernels of a class of stochastic linear hereditary
systems, II" (with R. Minton) at the 7th International Symposium on the
Mathematical Theory of Networks and Systems, Stockholm, Sweden, June
10~14, 1985.

6) R. Fennell gave a contributed paper "Control coordination for
large scale systems" (with J.A. Reneke and S.B. Black) at the 1985
American Control Conrerence, Boston, Massachusetts, June 19-~21, 1985.

RESEARCH Papers*

Decentralized Control for Large Scale Hereditary Systems
by J.A. Reneke and R.E. Fennell
Status: Submitted for publication.
Accepted for presentation at the 1985 IEEE Conference
on Decision and Control, Fort Lauderdale, Florida,
Dec. 11-13.

Control Coordination for Large Scale Systems
by R.E. Fennell, J.A. Reneke, and S.B. Black
Status: Appeared - Proceedings of the 1985 American Control
Conference June 19-21, 1985,

RHK Space Methods for Approximating the Covariance Kernels of a Class of
Stochastic Linear Hereditary Systems, II.
by J.A. Reneke and R.B. Minton.
Status: To appear - Proceedings Seventh International Symposium
on the Mathematical Theory of Networks and Systems, June
10-14, 1985,

Cononical Forms ror Decentralized Control
by R.E. Fennell
Status: Submitted for publication.

*Papers Attached
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DECENTRALIZED CONTROL FOR LARGE SCALE HEREDITARY SYSTEMS*

J. A. Reneke and R. E. Fennell
Department of Mathematical Sciences
Clemson University

Clemson, S. C. 29631

Abstract: A control strategy, which allows some level of autonomous
component control, for large scale hereditary systems is presented. The
basic problem considered is how to add conditions to the component
objectives and to arrange exchanges of information which enable all
components to achieve their objectives. The approach requires that
component interactions be suitably limited so that variational methods can
be used to de_termine component controls independently. A reproducing
kernel Hilbert space of Hellinger integrable functions provides the setting
for the description of system operators and the analysis of optimization

problems,

* This research was supported in part by the Air Force Office of

Scientific Research under Grant AFOSR-84-0236.
Keywords: Decentralized control, hereditary systems.

Abbreviated Title: Decentralized Control.
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DECENTRALIZED CONTROL FOR LARGE SCALE HEREDITARY SYSTEMS

ey J. A. Reneke and R.E. Fennell

1. Introduction. We present the mathematical theory of a decentralized

control strategy which allows some level of autonomous component control

o for -large scale systems. To indicate the difficulties of decantralized
b control, consider the problem of two controllers independently cho.osing
A controls to steer the two component system
E h'y(t) = cz.”h (t-1) * apohs(t) * Byvy(t)
: h'z(t) = azzhz(t) + Bzvz(t)
. :’,', from a given initial position to a desired terminal position. Although the
‘-, second component objective can be achieved independent of the first, some
= information about the second component is necessary for the simultaneous
- achievement of the first objective. The basic problem considered in this
t% . paper, a coordination problem, is how to add conditions to the component
: objectives and arrange exchanges of information which will enable all of the
_’_‘_ components to achieve their objectives autonomously. OQur approach to to
\:g the solution of this problem requires that component interactions be 1
suitably limited so that variational methods can be used to determine
N component control laws.
\‘3 Current interest in coordination of large scale systems is concentrated
o on the problem of system optimization for hierarchical or multilevel systems
(4], [14], [15]. Methods employed are typically off line iterative and are
usually only applied to finite dimensional state space systems. Our
methods apply to systems modelled by delay differential equations and
integral equations. Also application of these methods to control
: coordination problems for large scale systems leads to closed loop controls.
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. In our approach coordination of local control laws is achieved in one step
:":)‘ by the imposition of additional constraints on the system components.
\J Large scale systems will be described by operator equations defined
N on an infinite dimensional, reprocucing kernel Hilbert space and variational
',.::: methods will be used to solve terminal constraint probiems. A similar
approach to the solution of optimal control problems for systems modelled
by functional differential equations or Volterra integral equations appears
'_f in the work of Neustadt [10]. In Section |l we present the Hilbert space
background necessary for our analysis. Reproducing kernel Hilbert spaces
'::: are frequently used for the analysis of system problems, see the texts
[3], [16] and the references there. We have previously used a
;\- reproducing kernel Hilbert space of Hellinger integrable functions to
%- analyze identification and estimation problems [2], [12]. Such spaces have
' “ also arisen in the analysis of stochastic systems [9].
}t_ﬁ ‘ We are interested in terminal constraint and trajectory following
‘n. problems. In Section 1Il Lagrange Multiplier methods are used to
; characterize the solution of component control problems with interval
:.: constraints. Two local optimization problems are considered. One problem
':“" applies to hereditary systems in general while the other applies only to
.:: finite dimensional state space systems. |[n the first problem a nével
performance index is used while a more standard quadratic cost functional
f appears in the second problem.
' The ability to coordinate locally designed control laws depends on the
: type of interaction between system components. The concept of stably
::: connected systems is introduced in Section IV to describe interaction
..i between systerﬁ components. Coordination strategies can be developed for
:, stably connected systems by addirg side conditions to the component |
¥
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requirements and using the results of the local optimization problems
developed in Section Ill. Finite dimensional state space systems whose
system matrix is block ’.criangular or decomposed by strong components [8]
are stably connected. In Section |[Il we indicate how coordination
strategies can be developed for two component and other multicomponent
systems.

2. Preliminaries. For 0<r<T let S denote the interval [-r,T], X = Ed
denote the space of real d-tuples with the usual inner product <e,¢> and
norm |[*]. Let G denote the space of functions from S to X which are
continuous on S except, possibly, for a jump discontinuity at t = 0
(assume right continuity at 0), and let associated semi-norms be defined
by Nx(f) = sup_rsthlf(tH for x in S and f in G. Let k be a
nondecreasing, right continuous function on S with k(-r) = 1 and a jump
discontinuity at t = 0. We define B to be the set of linear transformations
of G to which B belongs provided 1) [Bf](t) = 0 for -r<t<0 and 2) there is
a constant b such that for any u, v in S with usv, |[Bf](v)-[Bf](u)| <
b!:Nx(f)dk(x). Operators in B are bounded transformations from
{G,NT} to {G,NT}. Systems whose dynamics can be described by an
operator equation of the form h = f *+ Bh with B in B are referred to as
hereditary systems. The defining properties of the class B not only
guarantee the existence and uniqueness of solutions to the systems under
consideration but also imply the invertibility of the system input-output

operator.

THEOREM 2.1 [12] If B is in B then |-B maps {G,NT} onto (G,NT} and

|1-B has a bounded inverse.
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Thus for B in B8 and A (I-B).1 we have the equivalent system

realizations
h=f+ Bh * Bu and h = A(f + Bu) (2.1) |

where f, u in G denote system inputs and controls and 8 denotes a linear
transformation from X to X. One should note that [Af](t) = f(t) for each |

f in G and -r<t<0.

Example 2.1. As an example consider a system of delay differential
equations of the form

h (t) = G.Ih(t) + azh(t'r) * B1v1 (t) + Bzvz(t) * e(t)
for 0<t<T and initial condition h(t) = ¢(t) for -r<t<0. Here <. ey 51, 82

represent matrices of appropriate dimension and r denotes a delay

parameter. Taking [Bh](t) = O for -r<t<0 and [Bh](t) =

JS[c.‘h(r)*azh(t-r)]dt for 0<t<T, the system may be written as
h=f+*Bh*+ Byug * Byuy (2.2)

with f(t) = ¢(t) for -r<t<0, f(t) = ¢(0) + J‘Be(r)dr for 0<t<T and ui(t) =
for -r<t<0, ui(t) = fBVi(T)dI for 0<t<T , i = 1,2. With k(t) = 1+*r+*t for

-r<t<0 and k(t) = 2*r*t for 0st<T, it follows that B is in B. The jump
discontinuity in k at t = 0 allows a similar discontinuity in the solutions of
L (2.2).

|
Analysis of the optimal control problems to be considered is simplified }

M) . when the domain of operators in B is restricted to the reproducing kernel

)

: Hilbert space GH of Hellinger integrable functions. Defining properties of

]

i

: this space may be found in the papers [2], [6], [12]. For completeness

i

::.': we mention those properties which will be used in this paper. The space

' \
".?. GH is the subspace of G with inner product denoted by QH(°,°), !
‘b
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associated norm NH(.)’ and reproducing kernel K defined by K(s,t)x =
k(s)x for -r<sst<T, = k(t)x for -r<t<s<T with x in X. Here we restrict k
as defined in Example 2.1. The kernel K maps SxS into the linear
transformations of X and satisfies K(e,t)Jx is in GH and <f(t),x> =
QH(f,K( ,A)x) for each t in S and x in X. [t may be shown shown that
Q,(f,g) = <f(-r),g(-r)> + 1] <df,dg>/dk where /] <df,dg>/dk is the

limit through refinement of the approximating sums
E<f(s,)-f(s;_1).9(s5,)-g(s; 10>/ (k(s)-k(s; 4)) with (s;: i = 0,....n} a

partition of S. The following result motivates us to restrict attention to

systems described by operator equations on {GH,QH}.

COROLLARY 2.2 [12] If B is in B then [-B maps {GH,NH} onto

H} and A = (I-B)_1 is a bounded transformation from {GH,NH} onto

(G Nyt

(GH N

For future reference we define on GH the family of projection
operators {Pt: t in S} by [Ptf](s) = f(s) for -r<s<t<T and [Ptf](s) = f(t)

for -r<t<s<T. |t may be shown that operators B in 8 and A = (I-B)

satisfy the causal property PtB = PtBPt’ PtA = PtAP for all t in S. It is

also useful to note that BI(I-BZ)J, (l-Bz)qB], and B B2 are in B

whenever B‘I’ B2 are in B. We will make frequent use of the operator C

0

7 in B defined by [Ch](t) = 0 for -r<t<0 and [Ch](t) = /§h(x)dk(x) for
o 0<t<T. The adjoint of C is given by [C*h](t) = K(t,T)h(T) - K(t,0)h(0)
e - [Ch](t) since

-~

- - T

o Qy(f,C*h) = Q(CF,h) = Ig<f,dh>

"

<«

2o ¥

Ly
te

<f(T),h(T)> - <f(0),h(0)> - :g<df h>
T

<€(T),h(T)> - <f(0),h(0)> - 14 <df,dCh>/dk

v w Y
XX

QH(f,K( ., T)h(T)-K( ,0)h(0)-Ch)

e

"

u 6
o
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,(1 for all f, h in GH. Finally, for sufficiently smooth functions note that
) . 2 2
o~ Ny-(5) = 1F0)] » 1318 (0)1%dx and, hence, N 2(Ch) = 1Th¥()ex.
o
3!
:.':] We conclude this section by stating a controllability assumption for
e
A
‘b‘»: hereditary systems. Let B be a linear transformation from X to X and let
. GU denote the set of u in GH with the property that Pou = 0 and u(t)
")
\_ belongs to the orthogonal complement of the null space of 8 for -r<t<T.
’ o
‘."-: Note that GU is a closed subspace of GH . We restrict attention to
h controls u in GU'
‘:;',:: Controllability Assumption: For B in 8, and B a linear transformation from
) - -
"r' X to X assume AB = (1-B) 15 maps GU onto (l—PO)GH.
_'
":{;{‘ Note that for B = | the invertibility of the input output operator A
:J .
o
::;‘_', guarantees .controllability. For delay differential equations, (2.1), this
(" .
- assumption implies function space controllability, [1], [7], [13].
:'_:::j 3. Local Optimization Problems. The control coordination strategy to be
-
i introduced in Section IV requires that component interactions be suitably
.'u’\‘ .
-,::}:. limited and certain side conditions be added to the component control
:‘:'.:':: objective.  Local control problems can then be solved without full
i .“
, information of the actions of other component controilers. Lagrange
,o
AN multiplier methods are used to characterize the solution to the local control
f'{:_ problems.
u In this section, we are concerned with system components whose
e -
.{,-,j signal diagram is of the form
2
e
::":
| g Figure 1
:'-:_',:
o
t ‘_ 7
"y
D N e e < AR ST A X )
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Here A = (l-B)-ll with B in 8, f in GH is a known input signal; g in GH
is an unknown input; u in GU is the component control; and 8, 7 denota
linear transformations from X to X. The signal g represents the effect of
other components upon the given component. We assume Pog = 0 and will
add other conditions necessary for the solution of the local optimization
problems. L S -

Two optimization problems will be consicdered, each is typical of the
type of local problems‘ which must be solved by the component controllers.

Let D belong to B, b and Y be in G and c, c be in X.

H;
Local Optimization Problem I. (LOP )
.. , 12
Minimize on GUxGH: J(u,h) = gNi(Asu) + zNH(C(y-Y))
~ Subject to: h = A(frg*8u)
COh(E) = b(t)  Ter<e<T
[Oh](T-r)

il
0

y = %th

given that [(1-7*C23) TAg](T-r) = ¢ and D(I-v*C27) 'Ag = 0.

Here the control objective is to force the response h to agree with b
over the terminal interval while at the same time steering the response y
. -~

along a desired trajectory Y. The conditions [(I-7%C~Y¥) 1Ag]('l'-r') = ¢

2,1
and D(I-7*C~7)

Ag = 0 summarize the information about g that ailows the
controller to solve the optimization problem. The rationale for these
restrictions will become apparent in the proof. In the performance index
for LCP | the term {rNHz(C(y-Y)) corresponds to the standard quadratic
cost functional ifg(y-Y)zdt whereas the term {rNHz(Asu) is novel and

represents a penalty on the response of the system rather than a direct

penaity on the control energy.

...... LI A R T Lo P

R .. ST , i SIS P
Ny e e el rales s s o mata PRI P PV N




in order to guarantee the existencs of a feasible solution, we make

the following assumption.

Regularity Assumption: Given c in X there exists a u in GU and h in GH
such that h = ABu, h(t) = 0 for T-r<t<T, and [Dh](T-r) = c.

Recall that reprocducing kernel Hilbert spaces are charactarized by the fact
that function evaluation is a continuous linear functional. Conseguently,
the constraint set for this problemA is a closed convex set. A slight
modification of the basic argument fo.r' minimum norm problems [S] vyields
the existence of a unique solution to LOP I. In orcder to characterize this
solution, LOP | can be reformulated as a optimization probiem in the
Hilbert space GUxGH. It should be noted that the condition h(t) = b(t)
for T-r<t<T is equivalent to the conditions h(T) = b(T) and (l-PT_r)(h-b)

~ = 0.

:;3 The Lagrange Multiplier Theorem asserts that if (u,h) minimizes J
ﬁ subject to the constraints then there exists elements \ and x of GH and u,
: v in X such that Q_ (ABSu,ABu-)) * Q_ (6h,¥*C*C(Th-Y) * X + (I-PL_Jk *
s _ . -r

;‘ K(,Tu + D*K( ,T-r)v) = 0 for all (§u,8h) in GUxGH. Let ¢ = ('-PT-r)E
o) then PT_P: = 0. Using the controllability assumption, it follows that ABu =

(I-PO)X and T*C*C(¥h-Y) = X + ¢ +* K( ,T)u * D*K( ,T-r)v = 0. Since
[C*h](t) = K(t,T)h(T) - K(0,T)h(0) - [Ch](t), one obtains after

. eliminating p from the previous equation

A = T*C2(zh-Y) * (1/(1+r))K( ,TINO) *
(1/C1+*F)KC , T)[D*K( ,T-r)v](0) - D*K( ,T-r)v - =

Lot ZNCACNOP

& and
1%
W 2
(I-Po)x = *C-(Th-Y) * kT( ,A(0)) + kz( V) - x 3.1)
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where kl(t,X(O)) = [P1(|-F’0)K( L TINO)] (), kz(t,v) =
[(I-PO){r.lk( ,T)[D*K( ,T-r)v](O)-D*K( ,T-r)v}](t) and r]=1/(1‘r‘). Nota
that for fixed t in S kl(t,k(O)) and kz(t,v) are linear in 3(0) and w.

Since h = A(f*g-8u) = A(f’g)’(l-Po)x, it follows that
2.,-1 2 !
h = (I-7*C7Y7) "{A(f*g) - ¥*C°Y ~ k'l( A00)) + ko( ,v) - k). (3.2)
The constraints imply h = (l-PT_r)b’PT_rh. Also the causal

2 - 2 -
properties of (1-7*C-7)" ) and D(I-7*C=7)"| together with the fact that

Pr..x = 0 imply that P2 _[(1-+*c?5) k] = 0 and P_ [D(I-7+C78) e] =

T-r
Using these observations we obtain the following linear system of equations

for A(0) and v:

b(T-r) = [(-7*C20) TAFI(T-r) = ¢ - [U-7*C?0) Va*c?Y](T-r)
» [0-7C20) Tk 2000 Ky 0,021 (T-r)

(3.3)
= [DU-7*C27) " TAf] (T-r) - [DU-7*C27) " terc2Y](T-r)
* [DU-7%¢7) 7k (M (0)) *ky € ,9) H(T-r).
It is apparent that the conditions [(I-r*sz)'1Ag](T-r) = ¢ and

D(I-!*sz)-lAg = 0 allow us to solve for A(0) and v with limited knowledge
of g. Using the constraint (I~PT_r)(h-b) = 0 and the fact that x = A(f*g)
* kg C,A(0)) * kol ,v) - (I-T*CT)h + T+CPY, we obtain from (3.1), (3.2)

the following theorem.

THEOREM 2.3. The pair (u,h) in GUxGH solves LOP | if and only if the

trajectory h has the form

. . e 2o T a ey - w2y o .
h = (1-Pp_ )b * P (I-7*CTT) T {A(frg) - T*CTY * K ( ,M0)) * ky( ,v)}
(3.4)

\'.‘. e ~
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and the control u has thg form

u = wy . Wy + L2 (3.5)
where

wy = 8 VA Texc2(zh-v)

- a=1.-1 2
Wy = B A "(I-¥*C z’)(l-PT_r)b

-1,-1 2 2.,-1 2
-8 A (I-X*C“Z)(I-PT_'_)(I-Z*C ¥) {A(f*g)-3¥*C~Y}
- ‘1 ‘1 2 - 2 -1 *

Here A(0), v satisfy the linear system of equations (3.3) and 5'1 is the

pseudoinverse of B.

In this result the control u is the sum of three terms, a dynamic feedback
Wi, @ causal (non-anticipatory) function 2 of the inputs b, f, g, Y, and
a open loop term Wg which depends on f, Y and the constants ¢ and c,
i.e., on some knowledge of g on the whole interval [-r,T-r]. For the
implementation of such a contrql law it is assumed that the observations ¥h
are available for feedback. The system diagram with such a control

strategy implemented is as follows.
Figure 2

One should note for finite dimensional state-space systems that S = [0,T],
and wy = 0. A simple example illustrating LOP | is presented after we
take up an alternate form of the component problem.

Next we consider a local optimization problem with the standard

quadratic cost functional '}Iglu'lzdt + «}Ig.ly-ledt.

Ty A% By P 2 MR R AR A
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Local Optimization Problem (1. (LOP II)
- » 1 2 A 2
Minimize on GUxGH: J(u,h) = zNH(u) . zNH(C(y-Y))

Subject to: h =f * Bh » g * Bu

h(T) = b(T)
[DRI(T) = ¢
y = th

-~

given that [Ag](T) = ¢ and DAg = 0 where A =
(1-B-88%(1-8) " 1e*c21) "} and Bh = B*h-K( ,T)[B*h](0).

In this problem we must restrict attention to finite dimensional, state
space systems. Let B = aC with a a linear transformation on X. With this j
restriction é as defined above is in 8, hence (l-é.).1 exists, and we may
again use the Lagrange Multiplier Theorem to characterize the optimal
trajectory and control.

In order that (u,h) in GUXGH solve this problem it is necessary that
there exist multipliers X in GH and y, v in X such tha* QH(Eu,u) +
QH(Cxah,C(Xh-Y)) * QH(Gh-BGh-BGu,X) + <[8h](T),u> + <[Dsh](T),v> =
QH(‘u-B*X,Gu)-;-QH(X*C*C(Zh-YP(l-B)*X*K( , TIurD*K( ,ij,ah) = 0 for all
(8u,8h) in GUxGH. Consequently, u = (I-PO)B*X and ¥*C*C(¥h-Y) + (I-
Bl)*\ + K( ,T)u * D*K( ,T)v = 0. One obtains, eliminating u form the
atove eqguation \ = x*cz(xh-Y) + B*\ + K( ,TI)N0) - K( ,T)[B*\](0)

+ K( ,TI[D*K( ,T)](0) - D*K( ,T)v. Thus & = (1-B) 1 {z*C(sh-Y)

*+ K( ,T)x0) * K( ,T)[D*k( ,0]v](0) - D*K( ,T)v} and

(1-P)x = (1-B) Torc2(zh-Y) + (1-Pp) (1-B) 1K ,TIA(O)  (3.6)
* K( ,TI[D*K( ,TIW](0)- D*K( ,TIv}.

It follows that

s



r‘.faf "

i

2

1'::0 .

o h = Af-Ag-Ass*(i-8) " rrcly-Ass*(1-py) (1-8) T (K( , T)A(0)

_:‘:;4 * K( ,T)[D*K( ,T)v](0)-D*K( ,T)v}
4, -~ -~ ~ ~ s
598 = Af * Ag - ABBR(1-B)TTTRCTY + k1 (,M(0) * Ky, ) (3.7)
O

oAty

. and
BA
(2 | T2

‘\_ u= 5*("8) K*C'(Xh-‘t’) * k13( r)\(o)) + k14( r\’) (3-8)
e
-,
where .

“‘ [ %* ~ -

e kyg (8. V=8 (1-P) (1-8) 1K, TIA] (1)

i ~ -1

e kq4(t,v)=[B*(1-P) (1-B)" {K( ,T)[D*K( , T)v](0)-D*K( ,TIv}](t)
f;‘.v ~ .

;-' For fixed t, k11(t,l), k13(t,x) are linear in \ and k12(t,v), kM(t,v) are
) )

' linear in 'v. The remaining constraints yield the following linear system of
":(‘ equations for A(0) and v:

'm F"
2% o ~  Rmak-n-Tewe2

_ b(T) = [Af](T) * c - [ABB*(1-B) '¥*C°Y](T) + k”(T,l(O)) * k.Iz(T,v)
i : L . @9
ﬁ:ﬁ c = [DAF](T) - [DABB*(I-B)-18*C‘Y](T) * [D{kn( ,X(O))’ku( )T
- | |

I Again the rationale for the conditions [Ag](T) = ¢ and DAg = 0 becomes
i:,\" apparent.

:";
Mo

30 . . . .
L,. : THEOREM 2.4, The pair (u,h) in GUxGH solves LOP [l if and only if u
3 and h are as given in equations (3.7), (3.8) and 1(0), v satisfy equations
o (3.9).

f‘:n

e
il Here the optimal control is made up of two terms: a dynamic feedhack of
'.:E:‘? the difference between the system observation and the desired trajectory
.‘
:.::'.:' and an open loop term depending upon the input f and the coordination
L)
-
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parameters ¢, c. The structure of the solution is depicted in the following

diagram.
Figure 3

To illustrate the significance of LOP | and LOP I, we consider two

examples.

Example 3.1 The problem is to steer the solution of the scalar
eguation h'(t) = h(t-1) * g.l(t) * v(t), t20 with initial position h(t) = 1 for
-1st<0 to the terminal position h(t) = 0 for 1st<2. We assume limited
information a_bout S1- ~ The system may be written as h = f + g «*+ Bh * u
or h = A(f*rg*u) with f(t) = 1 for -Izt<2, g = Cg‘l and u = Cv. Here A =
(1-8)77 with [Bh](t) = 0 for -15t<0 and [BR](t) = rGh(c-1)de for Ost<2.
We assume [(I-CZ)-1A9](1) = c. A solution is obtained by setting D = O,
b = 0, vy = h and choosing an appropriate Y in LOP |. -We obtain

f(t) -1=t<0
[AFI (1) ={ f(0)=rgf(e-T)dr 152
£(£)+rgf (e-1)deer] (t-1)f(c-2)de  Ostsd

(A1) = £(0) - [BFI(D) -1sk<2

0 -1st<0
(3]t =
I§(t-0h(x)de Ost<2
f(t) -1s=<0
[0-c3 e =
F(t) * Jgsinh(t-0)f(x)dr Ost<2

and the optimal trajectory and control can be determined from equations

N K
‘- ‘ Y \ -j
"\.‘(\'\ o -.--;.*\ «u
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"' (3.3), (3.4), and (3.5).
8
j Example 3.2 Let B = C and consider the problem of steering the scalar
1-‘)
W . system h(t) = t + [Bh](t) * 2u(t) for 0st<2 from h(0) = 0 to h(2) = 1
subject to the constraint [Dh](T) = (1/2)Igh(t)dt = 0. Setting g = 0 and
\'
.4:‘}:. y = zh and choosing an appropriate Y, LOP || may be used to solve this
b \' . i
. problem. One obtains, using Laplace transforms,
. [BhI(t) = th(0) - sih(c)dr
Gt ~
o - -(%- -
s (-8RI = h(o) - rge” " Dhiade + (1-e"Hh(0)
9 A
“ [AR](t) = h(t) * J‘é[/Zsinh/Z(t-t)"coshv/Z(t-r)]h(t)dt
' 2
. - [D*K( ,T)v](t) = [DK( ,t)v](T) = (1+t-t~/4)v
e .
Lr. and the optimal trajectory and control are determined from equations (3.7),
':;:: (3.8), and (3.9).
' ‘:\‘ ) These examples are indicative of the use of LOP | and LOP |l. Frequently
":.: i Laplace transforms may be used to determine system operators. In more
4
':9-' general problems, our Hilbert space setting aids in the representation and
o approximation of system operators [2],[12].
-
o
f{:)
4. A Decentralized Control Strategy. We will present a decentralized
, control strategy, a scheme for coordinating local control decisions, for
Bl .
, b large scale systems in which component interactions are suitably limited.
LY
4 " First, consider the two component control system
? _ hy = f1 * Bihy * Cohy * By,
o hy =f5 * Cihy = Byhy * Buy
:::, where the B's and C's are from B. We can diagram the system as follows:
-P*.
o
.r“t" Figure 4
e
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where A.=(1-8))71 for i =1, 2.
We define two components to be stably connected provided for all g in

-1

7
the conditien Ci(l-C') AiCJ.g = 0 holds for (i,j} = (1,2}. Large

POGH
scale systems composed of several components, each pair of which is stably
connected, will be referred to as stably connected systems. Local control
laws for stably connected systems can be coordinated by imposing sice
conditions as in the previous section and exchanging that information
among the component controllers.

For a stably connected two component system, consider the problem of
local controllers choosing controls Uy and Uy, respectively, on the interval
0<t<T which steer h1 and h2 to zero over the interval T-r<t<T, i.e. LOP |

with b = Y = 0 and B = ¥ = 1. We are led to the following control

coordination strategy.

Coordination Strategy: Let {i,j} = {1,2}. Given elements <4 and cy
from X and f1 and f2 in GH the ith controller solves LOP | with A = Ai’ g

= C.h., D= D. = (l_cz)‘lAC.’ ¢ = c., and E = c..
) l Joi i i

In this strategy the condition [(I-Cz)-1A1C2h2](T-r) =cy represents
the information that the first controller must have about the second
component in order that the local optimization problem can be solved. This
condition becomes a constraint on the second component. Similarly, the

condition [(I-Cz)-1A2C]h1](T-r) = ¢ becomes a constraint on the first
-1

5
component. The stably connected assumption implies that Di(l-C”) Aig =
"0 for each component and, hence, each controller can solve its local
optimization problem.

The stably connected condition can be given a geometric

interpretation in specific cases. |[f Ci = 0 for i = 1 or 2 then the
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0 components are stably connected and there is a3 hiararchical relation
:‘; between the components. |If Ci commutes with (I-CZ)-1 for i =1 and 2 on
f‘ POGH then the stably connected condition is equivalent to the condition
:::' CiAiCj =0 for (i,j} = {1,2}. If the latter condition is not satisfied , one
q:,j. . could argue that the input-output operator for the first component should
::"E be (I-A.IC2A1CZ])-1A‘l rather than A]. Similarly for the second component.
-;': For the examples considered in this paper Ci = ¢C with r>0 or r=0, where
- e is 3 dxd matrix, in either case Ci commutes with (I-Cz).1 on POGH. For
\\ finite dimensional state space systems i.e., r = 0 and B] = u.”C, C2 =
: °12C’ C1 = “21C' and B2 = aZZC with the % matrices of appropriate
.,-'f: cdimensions the two components will be stably connected if and only if the
::E controllability subspace determined by {aii,uij} is a subspace of the null
D space of o for {i,j} = (1,2).

A Other combinations of LOP | or LOP Il can be used as the basis for
\ defining a coordination strategy. In any such strategy, if Di denotes the
; operator appearing in the additional component constraint then we must
_ﬁ\ extend the definition of stably connected components to mean D‘IDZ = D2D1
_:;': = 0. Frequently the components form a hierarchy in which D1 =0 or D2 =
\E:: 0 and this condition is automatically satisfied.

Example 4.1 Consider the decentralized control problem of steering the
"\ two component system

hy'(8) = hy(t-1) * hy(t) * v,

f’ hz'(t) = hz(t) * vy

:.;ﬁ from hI(t) = 1 for -15t<0 to h.l(t) = 0 for 1st<2 and hz(O) =0 to h2(2) =
e 1. With notation as in Examples 3.1 and 3.2 the system may be written as
;:; h1 =f - B‘lhI * Ch2 * Uy

’-.: hy, = Bohy * u,
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Clearly the components form a hierarchy. The following coordination
strategy is suggested: the controller for the first component uses LOP |,
as in Example 3.1 with ¢ = Chz, to determine u]' while the second
controller uses LOP Il, as in Example 3.2 with D = (I-Cz)-1A], to
determine Us-
The implementation of our coordination strategi-es for a two component
system requires that apprépriate values for the parameters <, and <y be
available. These parameters are referred to as coordination parameters
and the problem of determining values for these parameters leads to a
higher level coordination problem.
A coordinating strategy can be developed for aI:IY stably connected
system. A rich class of such systems are those which can be thought of
as hierarchies. A canonical example is a multi-component system with

signal diagram of the following form
Figure 5

Clearly each pair of components is stably connected and we can envision a
command structure where the controller for the first component sets the
coordination parameters and, hence, the side conditions for the other two
components, i.e., specifies the values of [(l-C2J-1A1’C2h2](T) and [(I-
c)’ A]C3h3](TJ if LOP | is used. More generally, we can consider a

grid network of the form
Figure 6 .

provided the system is stably connected. The side conditions, using LOP

18
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ad 1, would have the following form.

% 7 -
s On the first component:  [(1-C)'A,Cih 1(T) = ¢

ora .

D On the second component: [(I-Cz) 1A1C21h2](T) = gy

NS 2. -1

A0t and [¢-c7) A3C23h2](T) = c5q

:\ On the third component: [(I-Cz)-1A2C3h3](T) cs3-

1 -\i

,_::_: Physical limitations on component interactions can vyield stably
A connected systems or decomposition methods may be used to transform a
"i* model into a stably connected system. We now present a basic
)

,;::2 decomposition procedure for finite dimensional systems of the form h(t) =
A0

“"‘\ f(t) + c!léh(s)ds + B1u1 + Bzu2 where r = 0 and « is a dxd matrix and Si
» &

B . is a dxni matrix for i = 1,2. See [11] for examples of this decomposition
'.‘_E:'.: and related coordination problems. For i=1,2 let I denote the projection
of X onto the controllability subspace spanned by the columns of the
:_:'_: matrix {Bi,aai,... ,ad_1si} and ]'[:3 a projection of X onto II.IX ﬂIsz.
l-'-.

e Assume X = II1X + II2X and recall that the identity may be weritten as | =
5N .

.» II.[ II2 - 1'[3

g We want a decomposition of the system in terms of the II's to which
) ._~:

f;}- we can apply our distributed control strategy. For 0< Mg, My, my <1, let
A £ = (I,-mgMy)f fy = (Iy-(1-m)T;)f

_ and

o = (My-myy)el, 2y = Mlpaly

o o1 = Mlgely a2 = (y=myl)ally.

,' Furthermore, let B.l = a”C, C1 = a21C, B2 = ey, C2 = °12C' Our
j::; decomposition has the form :
.2 |
.‘-J h1 = f1 - B]h] *> Czhz * B1U.‘

:.u h2 = f2 * C1h1 * Bzh2 . Bzuz.

N.

‘,.. It follows, using the invariance properties of the controllability subspaces,
5

'-..‘. :
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* - + +* +* t - +* t - >
hy = hy = £ = fy = laggrayydighyct = (aqptegy)ighydts Byup +85u,

rth

= . + t - S

= f HIGTH 0 ]dt Hzal'[zfohzdt ﬁ-lu.l BZUZ
- - t - t + >

= f n1d0h1dt Hchohzdt B1u1 Bzuz

= + - t + t
= f (H1 H3)aj0h'ldt H?.“fohf’t .
. - t + t - -
(52 I[B)a.fohzdt T[3afoh2dt ﬁ1u] Bzuz
= - +TT - t » + +
= f (II.I IIZ H3)cf0(h1 hz)dt B.ll.l1 Bzuz.

Thus h = h] + h2 and the decomposition can be diagramed as follows:
Figure 7

where A = (1-B)71 , i=1,2.
The system will be stably connected provided C]A1C2 = CZAZ 1 = 0.

Here C2A2C1 = m11'[3aII1(l-(IIz-mzl'[3)cxII2C)-Imzl'[:iaIIzC and a similar

expression holds for ClAICZ‘

We consider three cases i) H1XnH2X = (0}; ii) I X§H1X; and iii)

2

4 < 4 - - - -1 .
IL,X#X, I,X#X, I XﬂHZXr{O}. if vy =0 (Hz szls)aIIZC) m2H3aII2x then

1 2 1
the invariance properties of the controilability subspaces imply that H]Cy =

T[3Cy. Consquently, the stably connected condition is satisfied for all

choices of m, and m, whenever II3<:II3 = 0. In the first case II3 = 0 and

there is no interaction between the components. In the second case 1'[:3 =
II2 and the situation seems to be most interesting when II3aI[3 £ 0. In this
case the stably connected condition can be met by choosing either m, or
m, to be zero forming a "hierarchical” system. Finally, the third case is
mixed since Haczﬂa might or might not be zero. When 1'[331'[3 = 0 and m,my #

0 note that the system is not a hierarchy and the components interact.

5. Concluding Remarks. |If one views the system components as basic
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building blocks then our coordination strategy for stably connected
systems may be viewed as a rule for putting together more complex
structured systems. From this point of view the open and closed loop
control laws arising from the local optimization problems determine
additional components to be "hardwired” into the system.

To implement such a control strategy one may envision a coordinator
who acts or may act on the system by setting the component objective:
trajectories, or side conditions necessary for coordination. terminal
constraints, desired trajectories, or side condition necessary for
coordination. Such a coordinator may use centralized knowledge of the
performance of each component to set coordination parameters. Realisticly,
only limited information on component performance would be available to the
coordinator. Another possibility is that a command structure is imposed
among t-he the system components for the choice of component objectives
and the passage of information. There are many possibilities. However,
the basic idea is that in any such structure there is a predetermined order
in which component objectives are to be set. Certain components may be
free to set their own objectives while other components would have extra

side conditions added to their requirements.
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CONTROL COORDINATION FOR LARCE SCALE SYSTEMS

R. E. Fennell®* and J. A. Reneke*
Department of Mathematical Sciences, Clemson University, Clemson, SC 29631

S. B. Black, Harris Corporation, Melbourne, FL 32902

ABSTRACT

A control strategy, which allows some level of
autonomous component control, for large scale
systems 1s presented. The approach requires that
component interactions be sultably limited so
that variational methods can be used to determine
component controls.

INTRODUCTION

Decentralized control problems for large scale
finite dimensional linear systems are considered.
For systems with two controllers we consider the
problem of {independently choosing controls to
steer component responses to desired terminal
conditions. It is shown that some level of
autonomous component control {s possible when
additional constraints are placed upon the
component requirements and exchanges of related
information between components ls allowed. The
ability to coordinate locally designed control
laws depends on the level of {nteraction between
system components.

Our methods may be referred to as multi-level or
hierarchical, (1), (2), in the sense that i) the
system must be decomposed into local components,
{1) local models are used in the design of
component control laws, {11) a higher level
coordination problem is introduced. Typically
multi-level methods involve off line {terative
calculations and result in open loop controls.
In our appraoch coordination of component
controls 13 achieved in one step by the imposi-
tion of additional constraints on the system
components and closed loop control laws are
obtained. The choice of appropriate values for
parameters appearing in these added constraints
leads to a higher level coordination problem.

COMPONENT CONTROL PROBLEM

Our methods require that components modelled by
differential equations be written in integrated
form as h(t) = f(t) + [Bh](t) + Bu(t) + gy(t) and
y(t) = vih(t) + Yyg5(t),

* Research supported in part by the Air Force
Office of Scientific Research under Grant
AFOSR-84-0236.
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where [Bh](t) = a[Ch](t);

'

|

ing kernel Hilbert space of functions.

with [Ch](t) = I;h(T)dT anc a, B, Yy, Yo, denote

matrices of appropriate dimensi{ion. Here u
denotes the component control, f denotes a knowuwn
disturbance and gy, gy denote the effect of other
components upon the given component. Let A =
(1-8)~ ! denote the component input-output
operator.

We consgsider the problem of steering h(t) from
h(0) = £(0) to a desired terminal condition h(T)
= b, Let ¢, ¢ denote f{xed parameters and let D
denote a linear operator defined on the under-
lying function space. The typical form of a
component optimization problem is as follows:

Minimize: J{(u,h) = ng(y-Y)Z + (u')zdt

Subject to: h(t) = f£(t) +« [Bhl(t) + gu(t) + 31(t)
h(T) = b
oh(T) = ¢
y(t) = Y, h(t) + ngz(t)
given [A(81+BY23 UT) = ¢ and D(A(gl*BYZgZ)) -0
where operators A and B are defined by
A - (1-8-BY))7', B - ss*(1-8) 'vac?

[Bh](t) - [B‘h](t) - K(t, T)[B'h](o)

, and

In this problem an interval constraint has been
placed upon h, Y denotes a desired response, and
K{s,t) = k(min(s,t))I with I the identity and
k(t) = 1+t. The conditions [A(g1oBY232)](T) -c
and D[A(BI*BYggz)] = 0 summarize information
about gy and g, that allow the controller to
solve this optimization problem. These condi-
tions will become added constraints on the compo-
nents which determine gy and gp. For a =similar
reason the constraint {Dh)}{(T) = ¢ {3 included in
the above problem. For certain hierarchical
relations between system components the condition
D(A(g1+BYp82)) = 0 is naturally satisfied.

The local control problem can be reformulated as
a constrained optimization problem in a reproduc-
The {nner
product in this space is essentially defined by

“f,85, = <£(0),g(0)> + Ig<r'(c>.g'(t)>az.

Lagrange mult{plier methods (3},
optimal coentrol

yield the
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, [Dho)(T) = [Ay(Coyhp*ByYaha)(T) = o.

P
;

PN

u(t) = [8*(1-8) 7' vjc2 (v hey
+ k](t,x) + kz(t.v)
where the open loop terms are defined by
Ky (6,0) = [B*(I-PQ)(1-B)7'K( ,)al(E)
ky(t,v) = [e*(x-Po)(I—e)"(K( ,T)[D*K( ,T)v1(0) 1
- D*K{ ,Tivil(L). hy(T) = b,

With this control strategy implemented the system Yy =Yh, +Ynh

Tt e
response is ¢B1Y2)h2](T) - c,

2gz—r)](t)

n

For example, to steer hy from hy(0)=0 to hy(T)=b;
and hy from h3(0)=0 to h3(T)=bp, the component
optimization problems would be

L}
I. Minimize: XIE(Y‘h‘¢Y2h2-Y1)dt + ngu‘(t)zdt
Subject to: h, = B‘h1 + C21h2 + 81u

.
g1

1

given [Al(CZI

T v 2 T, 2
II. Minimize: z]o(v3n2 Y%t z[ouz(t) dt
Subject to: h, = B h_ + 82u2

n(t) = Af+R(g,+BY,8,)-ABY+AB(K, ( ,A)+ky( ,v)).

and the multipliers A, v are solutions of the

equations hz(T) 2 g
~ ind ~An -~ 2 - 2
b = [Af](T)+c~ +[AB{k, { ,AY¢k, ( , T - ~ -
[AA]( )+c [ffY](T) S f{ 1 Can)e 5 wIT) [Ar(cz1’5172)h23(r) -
¢ = [DAfI(T)-[DABYI(T)+[DAB(K, ( ,M)+k,( ,v)}IT). ¥y = Y3h,e

Here [(1-Pg)f](t) = £(t) - £(0) and [B*h](t) =
a*(K(t,T)h(T) - K(t,0)h{(0) - (Chl(t). In the
scalar case [D*K( ,T)v](t) = [DK( ,t)v](T) and in
the vector case [D*K( ,T)v](t) is determined by
<(o*k( ,TIvI(t), e3> = <[DK( ,t)ej}(T),w>.

Note that each local control problem can be
golved independently provided that the operator
A1(Cp1=B1Y2) and the value of ¢ is known to each
controller. The choice of appropriate values for
this coordination parameter leads to a higher

level coordination problem.
For low order systems all operators arising in

the component control problem can be obtained
using Laplace transform methods. Higher order
systems require numerical approximations to these
operators., Theoretical verification of the
existence and uniqueness of solutions to local
control problems of the above form is the subject
of a forthcoming paper (4).

This example illustrates our approach to
decentralized control and control coordination
for large scale systems. 1In the scalar case,
operators which appear in this coordination
strategy have the following representation

[Bh]St) - a(th(0) - [ChI(t))
[(1-8)"*hi(t) = (1-¢ **)n(0) + n(t)
-« Ige-u(t-t)

CONTROL COORDINATION

As an example of our coordination strategy we
conaider the following two component system

h(t)dt

. c2ni(e) - Igft-t)h(i)dt
2

(BhI(t) = (1/a) Ig(w-e'“(t"’)Yh(r)dr

and A is the input output operator with transfer
function (s2+qs)/(82-(a2+82Y2), These formula
can be used to simulate our coordination strategy
for two component systems as diagrammed.
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RKH SPACE METHODS FOR APPROXIMATING THE COVARIANCE KERNELS
OF A CLASS OF STOCHASTIC LINEAR HEREDITARY SYSTEMS, II

James A. Reneke!
Clemson University
Clemson, South Carolina

Roland B. Minton
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

Reproducing kernel Hilbert space methods have produced
useful approximations for estimation and control
problems of deterministic linear hereditary systems.
By obtaining explicit Parzen type RKH space
representations of stochastic processes governed by
linear hereditary systems as spaces of Hellinger
integrable functions these same approximation methods
apply to the problem of finding the covariance kernel
given the model. Some sample calculations will be
presented.

INTRODUCTION

A convenient summary of the inner product space geometry of second order
stochastic processes can be found in (3, Chapter 2]. Our concern is with the
covariance kernel of such a process, the reprodvecing kernel of a Hilbert space
representation of the process [5]. A recent collection of papers [9] covering
the last two decades illustrates the utility of RKH space methods for
computing various functionals of a process related to problems of estimation
and detection.

The covariance kernel also plays a central role in the design of controls for
linear finite dimensional state space systems [8]. 1In this work the diagonal of
the kernel function, the variance of the system response to a general noise
process, is most important and can be found by solving a matrix Riccati equation.
However, for hereditary systems, systems modelled by delay differential equations
for instance, the covariance kernel has not been so useful. One difficulty is
that infinite dimensional state space methods lead to an operator Riccati equation
for the variance of the states [2] rather than the variance of the process.

The approach of this paper to the problem of estimating the covariance kernel
of the response of an hereditary system to a general noise process input is in the
spirit of Parzen's original idea. We extend the method presented in [7] for
scalar systems to obtain an explicit description of the reproducing kernel Hilbert
space representing the process as a space of Hellinger integrable functions [4].
Convergence of a class of finite dimensional approximations to the covariance
kernel is obtained using the approximation theory developed in [6].
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SOME BACKGROUND NOTATION

We are concerned with second order processes {X(t). t in s} with values in
R4, i.e., the components of the dxd matrix E(X(t)X'(t)) are finite for each t.
Let <.,+> denote the usual inner product for R4 and ]- Ithe inner product norm.

Parzen's covariance kernel R is defined by R(s,t) = E(X(S)X'(t)], for each s

n
and t in S. One has immediately that I <e¢_,R(s_,s )e > > 0 for each sequence
S y p’q=o p’ ( p’ q q z q

{sp}pzo in S and sequence {Cp}p:O in RY. Aronszajn's classic result [1] tells us

that there is a complete Hilbert space G for which R is a reproducing kernel,
i.e., denoting the inner product by Q(+,+) we have
i) R( ,t)e is in G for each t in S and ¢ in RY and
ii) Q(f, R( ,t)e) = <f(t),e> for each £ in G, t in S, and ¢ in R,

It is appropriate to think of {G,Q} as a representation of {X(t), t in S}
since, for each ¢ in RY, the function Yo from LZ(X(t),t in s) into {G,Q}
defined by ye(u) = E(Xu')ec maps X(t) to R( ,t)c, for each t in S. However,
obtaining {G,Q} explicitly is basic to making use of this representation of
the process.

Consider for instance the process given by the real valued stochastic
differential equation dX = oX(t)dt + dW where W is the standard Wiener
process. The covariance kernel for {X(t), t > 0} is given by R(s,t) =
(1/a)exp{a max(t,s)). sinh(a min(t,s)), for s,t in S = [0,=). The
corresponding RKH space G is the space of all functions f which are 0 at 0,
absolutely continuous on compact subintervals of S, and such that

f; | £1(t) - af(t) | 2 dt < =. The inner product Q is given by
Q(f,g) = I;(f'm - af(t)(g'(t) - ag(t))dt for each f and g in G.

This elementary result can be generalized to include delay systems.
However, Parzen's ideas apply to more complicated systems which we will
attempt to encompass by introducing an abstract formulation. Assume S =
[-r,») where r > 0 and k is an increasing function from S to the numbers with
k(-r)=0. Let Ga denote the space of continuous Rd valued functions on § and
Gy the subset of Gy to which f belongs only in case f(-r) = 0 and f is
Hellinger integrable with respect to k on compact subintervals of S [4,6],
i.e., for each compact subinterval [u,v] of S there is a number b such that

2 m - 2 - e
Iglar Prak =z | (s )=rls ) l/(k(sp) k(sp_1)) < b for each partition

[sp}zzo of [u,v]. The Hellinger integral Ii | df [2/dk is the least

such number b.

Note that elements of Gy are absolutely continuous on compact subintervals of
of S. Furthermore, if each of f and g is in Gy and [u,v] is a compact subinterval

PRl S coannrsSl Seapipase ) 8
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then the integral Ix<df,dg>/dk exists as a limit through refinement of partitions

of [u,v] of approximating sums of the form £s<df,dg>/dk = pr1<f(sp)—f(sp_1),

g(s,)-g(s _, )>/(k(sp)-k(sp_1 )).

For each u in S and £ in Gg let N (f) = l.u.b. | £(x) | and
x<u

f(x) X

[FaY
=

[P £](x) =
u f(u) u

A
=

Let denote the class of linear transformations of Gg to which B belongs
only in case

i) [Bf](u) = O for each f in Gp and u < 0 and

ii) for each compact subinterval Sy of S there is a number ¢ such that

l[Bf](v) - [Bf](u) ]5 c fuNx(f)dk(x), for each f in Gy and subinterval [u,v] of
Sg.

Note that the formal integral operator
0 u

I
o

(BfJ(u) = u u
a Iof(s)dk(s) + sIOf(s—r)dk(s) 0 <

A
[/:]

where o and 8 are dxd matrices, restricted to Gp is in B.

Let A denote the space of linear transformations of Go to which A belongs
only in case A - I is in B, where I also denotes the identity transformation on Gg.
If B is in B then I-B is a reversible function from Gy onto Gg and (I B)” 1 is in A,
If A is inA then A is a reversible function from Gp onto Gy and I-A is in B

Consider the process

j2(e) t <0
X(t) =

(z(t) + [BXI(L) o<t
- - [AZI(E) ,

where B is in B, A = (I-B)~', and Z is a mean-zero process in R9 with independent

increments, and E(dz(dZ)') = (dk)I, I the dxd identity. We assume that Z(-r) = O.
In the next section we want to obtain explicitly an RKH space which represents the
process {X(t), t in S} in the sense of Parzen.
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AN RKH SPACE PARAMETERIZATION OF R.
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We begin with a generalization of the earlier elementary result for the pro-

cess given by X(t) = W(t) + afg X(s)ds. Let G_ denote the subset of GH to which f

belongs only in case I:r [ dr |2/dk < =» and Qcn the inner product for Gg given
by Qa(f,g) = ffr<df,dg>/dk. Recall that elements of GH are 0 at -r.

Theorem. If R( ,t)c is in Gy for each t in S and ¢ in R4 then the process
{X(£), t in S} given above can be represented in the sense of Parzen by the RKH
space {G,Q} where

1) G is the subspace of G, to which f belongs only in case (I-B)f is in Gm and

H
2) Q is the inner product for G given by Q(f,g) = Qm((I-B)f, (I-B)g) for each
(f,g) in GxG.

Indication of Proof. As an indication that everything works, notice
tnat there is a function M from S S to the d d matrices such that X(t) =

fazi (o) = IE”M(t,s)dZ(s) for each t in S and

0 ift<u<v
E(dz(u,v)([AZI(t))") =

I
<
~
ct
.

IKM'(t,s)dk(s) if u

Also if s < t and ¢ in RY then
[(1-8)R( ,s)e](t) = [(I-B)E(X(-) X' (s))e](t)

E(Z(+) X'(s))ec](t)

[

(E(z(+) x'(s))e](s)

[(1-B)R( ,s)e](s) ,

i.e., (I-B)R( ,s)c is in G_or R( ,s)c is in G for all s in S and ¢ in Rd.

Furthermore, if ¢q and c¢p are d-vectors,

<c1,R(s,t)c2>

<c1,E(X(s)X'(t)]cz>

s t .
= <eB(JZ Ms,waz(w) (2 M(t,v)az(v)] Je>

3 1
<c1, I‘PM(s,u)M (t,u)dk(u)c2>

IS Mt (s,u)e ,M'(t,u)ec >dk(u)
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o = JZ<aE(z()x" (s)])e, ,aE(Z(+)X" (£))e,>/dk
\
..
. = Q((1-B)R( ,s)e,, (I-BIR( ,t)c,)
4 ’
[ = Q(R( »s)e,, R( ,t)cz].
‘\‘ .
e Let K denote the function from SxS to the dxd matrices given by
k(s + r)I s<t
,. K(S,t) =
X K(t + r)I t < s.
1 =
; Note that K is the reproducing kernel for {G_,Q_}.
,g Theorem. For s < t, R(s,t) = [A(PLa)*K( ,t)](s).
G Proof. Since P A is a continuous linear transformationof {Gm,Qw}, we have
K,
the adjoint (PyA)* exists. Also AK( ,s8) is in G for each s in S. Hence, for
. ;
: arbitrary d-vectors c¢; and ¢5 and s i t in s,
. <[AK( ,s)](t)cl,c2> = Q(AK( »s)e,, R( ,t)cz]
. = J° <ak( ,s)e,,a(I-B)R( ,t)e.>/dk
Y -r 1 2
5 ’
Ry = <e.,[(1-BIRC ,t) [(s)e > f
12 »
3
On the other hand,
v <[AK( ,s)](t)cT,c2> = Q_(aK( ,s)e,, K( t)e,)
3 | *
3 = Q(K( ,s)e,, (PAI* K( ,t)c,)
) -
AN
= <e,[(P ) KC ,8)](s)e,y
5 Since ¢y and cp are arbitrary, Pg(I-B) R( ,t) = Pg(PgA)* K( ,t). But then
18 :
1 PgAP5(I-B)R( ,t) = PgR( ,t) = PgA(PtA)* K( ,t) or R(s,t) =
CA(PLA)* K( ,t)](s).
0 We might note this can also be written <R(s,t)c,,c,> = Q_(K( »8)e,, A(PA)*
a. K( ,t)cz] - Qa((PSA)*K( ,s)c1, (PtA)* K( ,t)cz). If we introduce the matrix L
X
I defined by L(s,t) = [(PtA)* K( ,t)](2) = [Pt(PtA)* K( ,t)](s), then L(s,t) =
:2 L(t,t) when s > t, L( ,t)ci is in G for i=1,2, and <R(s,t)c1,c2> =
) @ .
H _
_ Q(L( »8)e,, L .t)cz).
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NUMERICAL METHODS.

N
3

A For the purpose of illustration assume that everything is scalar
3 valued, i.e., ¢ = 1, and k= I the identity on S. Computing [diag R](t), for
- a given t, splits into two parts. We are concerned first with function
- evaluations L(s,t) = [AK( ,s)](t) and then with
afﬁ the integral QG(L( ,£),L( ,t)) = IEP | dL( ,t) |2/dI. Working backward, observe
A"

1..\' th . . n 2
: at the approximating sums [ L{s_,t) - L(s ,t) */(s_-s for the
! PP g p=1 I ( pv p-1 ) l ( p p_1)
3*_ intergral are nondecreasing with respect to refinement [4].
Y
K, Ifs-s _,=6>0forp=1,2,...,0n, €is a positive number, and L( ,t)
ch is an approximation for L( ,t) such that |L(sp,t) - L(sp,t) | < e for p =
o 1,2,...,n, then | 27 | L(s_,t) - L(s__.,t) | 2/§ - % , | L(s_,t) -
o .n 3 o0 eypily p=1 pr p_1v p=1 pr
4 2
) L(s,_st) | 276 | < del2n (LC ,t)+el/6.
.- Thus, assuming the operator A is given formally by an integro-differential

ﬁij equation, we can compute for a fixed partition {sp}p?o of [-r,t] the
-t‘:- -

ﬁ}' approximating sum Zs ]dL( ,£) F/dI to any desired accuracy. By refining
"--

< .

. in turn the partitions s we obtain [diag RJ](t).

t}' The method was implemented for the class of scalar systems of the form
\",:.

N

- nit) = £(t) + afgh(u)du + Bfgh(u-r1)du + Yfgh(u-rz)du.

. Experiments with t = 2, ry = 1/2, rp = 1, and various values of a, B, and Y, -2 £
:?. a, 8, Y < 2, the algorithm always converged with err = 0.001, i.e., halving the
}i step size for the function evaluation and the integral quadrature produced no
[~ change in in the first four decimals of [diag R](t).

(e CONCLUSIONS
:;j RKH space methods lead to an explicit representation of the convariance
L:a kernel for a process governed by an integro-differential equation in terms of
- solutions that can be obtained by standard numerical methods. Although the
:'E presentation of these methods for the sake of clarity was in terms of scalar

systems, the methods are readily extended to finite dimensional vector systems.
The relative straightforward nature of these methods leads cne to anticipate their
incorporation into a general methodology for system identification and control
design ‘or hereditary systems.
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Robert E. Fennell®
&
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Abstract. Geometric, algebraic, and graph theoretic prdperties of system
matrices are presented which allow some autonomy in the choice of component

control laws for large scale systems. The results are based upon a

decentralized control strategy for two component systems which requires that
component control laws be of a specified form, that an additional constraint be
placed upon ccmponent control requirements, and that component interactions be

suitably limited.
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CANCNICAL FORMS FCR DECENTRALIZED CONTRCL

Robert E. Fennell

I. INTRODUCTION
Decentralized control problems for finite dimensional state space systems

with two independent controllers are considered, Systems of the form

dhi/dt = @11 hq + ayp ho + 81 u
(1
dnp/dt = ap1 hy + ag2 Ny + B2 U2

dx/dt = F x + G1 uy + G2 up (2)

where ayq, a2, @21, @22, B, 82, F, G1, G2 denote matrices of appropriate
dimension will be considered. Independent control canndt be achieved without
some restriction upon the interaction between system components. The objective
of this paper is to characterize geometric and algebraic conditions which allow
scme autonomy in the choice of controls for systems of the form (1) or (2).

In Section II, a general decentralized control strategy is presented for
systems of the form (1). The approach requires that each component control law
be the sum of a feedback term and an open loop term, that an additional
cénstraint be added to the component control requirements, and that component
interactions be suitably limited. This contrcl strategy is adapted frcm
previous efforts, Reneke (1984), in which variational methods were used to shaw
that séme level of autonomous component control is possible when additional
contraints are placed upon component requirements and exchanges of related
information 13 allowed. -The approach may be referred to as multl~level or
hierachial, see Sandell et al. (1978) and Findeisen et al. (1980), in the sense
that local models are used in the design of component control laws and a higher

level c¢oordination problem is introduced.
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The decentralized control strategy to be introduced applies when the
interaction between ccmponents in (1) is suitably limited, i.e., the components

are stably connected, In Section II, this condition i3 characterized in teras

of gecmetric properties of the matrices ayq, @12, @21, and ajo.

For systems of the form (2) controllability subspaces, see Wonham (1985
(1), or strong ccmponents, see Siljak (1978) or Michel et al. (1978), may be
used to deccmpose control problems into problems for two component systems of
the form (1). In Secticn III such a deccmposition is presented and the stably
connected condition is characterized in this case. In the final section,
interconnected hierachies of the form (1) are considered. That is a1 and azp
are assumed to be block lower triangular and a graph thecretic characterization

£ the stably connected condition is presented.

II. A DECENTRALIZED CONTROL STRATEGY

Let (1) be written in integrated form as .
hy = £1 + B4 h1+C2h2+V1 (1.1)
hp = £ + Cy hy + Bp hy + vy ) (1.2)
: <t
where Bijh = @;jCh, Cijh = c,JiCh, vy = Cuy with fchi(t) = Ioh(r)dt and £j(t)=h;(0)
for (i,J}-{T,Z}. For simplicity, it is assumed that g;j=I; the identity
ransforaation for ia1,2. Henceforth whenever indicies i or j appear in a

statement it is to be assumed that {i,j}={1,2}. Preliminary calculations show

that [C2n](t) = Ig(t-t)h(t)dr and, using Laplace transforms that

[(1-¢2)~ThI(t) = h(t) + [§sinh(t-t)h(t)dt. Of course the underlying function
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space must be restricted so that this inverse operator exists. Similarly, if
CAgvI(E) = fgexp(aii(t-t))v(t)dr then A; = (I-8;)"! and A;~' = I-8;.
The control problem is to choose vy, v, independently to steer the
components from a given position hj(Q) = hjg to a desired terminal position
h; (T) = hyr for i=1,2.
Qur decentralized control strategy, which allows scme autoncmy in the choice

of ccmpenent controls, requires that for a given parameter c; the constraint
[(1-C2)~'ajCih; UT) = ¢4 ' (3.1)
be added to the i®h control requirements, that component interactions be limited
so that
(1-c2)~1ac (1-c2)"Na5Ccy = 0, (4.1)
and that the control law for the ith component be of thé'rorm
vi(t)'- [a;71C2(hy~Y)+a " T{kyq € ,a5)*+kia( ,vi)}ICE) (5.1)
where Y; denotes a desired‘trajectory for the resp;nse hy, the functions
ki1(t,\) and kjo(t,v) are linear in the parameters Ai, vy respectivley, and ijy,
v{ satisfy
hit = [(I-C2)"T{Agfi+e5=C2 ki1 M) *kia( ,v)I(T)
(6.1)
e; = [D4(I-C)"M{a10i=C2Y +ki1C ,A)+kio( L) JI(T)
with Dy = (I-C2)"'AyCy.

THECREM 1. If the ccntrol law (5.1{) {3 used {n component (1.i) and condition

(4.J) holds then the resnonse h; satisfies hj(0) = hyy, hi(T) = hy, and the

additional constraint [(I-C2)7TA;Cih 1(T) = ¢y is satisfied.




ftﬁfﬂ

A .

e

Ay by et A A

(4
a'a 8

1

g
]

.
4

LS
~
[ Nt ]
"u‘.‘
Y

., "

e e mas anv e dok oot St gial Sad Sedh el Jiedt et Jhach Shal a2
T TETE TS r

Since [C;h](0) = 0, [B;h](0) = 0, and [A;~'h1(0) = h(0) for all functions
h, it follows that h;(Q) = £;(0) = hjg. Let wi(t) = [A;"1{k;1( ,A;)

*+ kya( ,vi)}1(t). Substituting (5.1) {nto (1.i), one obtains (I-8;)(I-C2)h; =
£3+C3hy=A;71C20 +ws . Thus hy = (I-C2)71{A;£5+4;C5hy=C2Y ok 1( A1) +kia( ,vg) ).
It follows that h; (T)=njr and [(I-C2)7'A;Cih;I(T) = ¢j since Aj,v; satisfy
equations (6.1). .

In this decentralized control strategy the controller for the it1 component
is free to choose the desired response Yj and the functions Kjq, Kjs so that
condition (3.1) is satisified and equations (6.i) can be solved for ij, vij. The
condition (3.j) is the only information about the j%*1 component used to
determine the control law for the ith component. Here component controls are
coordinated in one step, i.e., for given ¢y, ¢y component control objectives are
achieved when controls are determined by (5.1), (5.2) and the constraints (3.1),
(3.2) are satisfied. Other decentralized control strategies typically require
of? line iterative calculations between controllers for coordination. In our
strategy, choice of approprigte values for the parameters ¢p, ¢y leads to a
higher level coordination préblem.

Optimization techniques can be used to determine specific component cont;ol
laws. For example, Reneke (1984) shows that a control law of form (5.i) is
optimal if the performance index J(uj,hj) = (1/2)I8Ehi]2(t)+[Aihi]2(r)dt is
minimized subject to the constraints hj = f£j+Bjhj+Cjhj+vi, hi(T) =
hijp, [(D4hI(T) = ¢; given that [Djhj]fT) = ¢j and DjDy = 0. The standard
quadratic cost functional (1/Z)Ig[vi]2(1)+fhi]2(r)dt can also be used as a basis

for the choice of component control laws, see Fennell et al. (1985) for an

example.
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Condition (4.1), (4.2), i.e., DiDo = DoDy = O, represent a restriction upon

Ay
L

the interaction between the two components. Two components of the form

(1) satisfying such conditions are referred to as stably connected components.

v,
ag - The otjective of this paper is to present gecmetric and algebraic
EE characterizations of the stably connected condition.

. THECREM 2. The ccmponients in (1) are stably connected if and only if CiAC5 = O
EE and CoAsCy = 0.
Y If h = (I~C2)"1f then h = £ + C2n and Cjh = C;f + C;C%h = C;f + C2C;h. By
. uniqueness Cjh =~ (I-C2)7'C;f, i.e. C;(I~C2) = (I-C2)C;. Therefore DiD5 = DoDq =
i 0 if and only if CyA;Cp = O and CoApCy = O.

r§3 Thus although each component can affect the other the stably connected
! condition implies there is no feed-through effect. Basic properties of finite
_Eé dimensional systemé yield the following geocmetric charaéierization of the stably
ig; connected condition.

THEOREM 3. The system (1) is stably connected if and only if

i{; . spanlays, a11a12, a112e¢12....1 CKer(asy) and

: spanfasy, @22a21, @222a21,...] C Ker(ay 2).

Let y(t) = [A4Cov](t) for some v, 0<t<T, then invariance préperties of

‘_E controllability subspaces imply y(t) belongs to spanlaiz, @11812, @112G12,«+]

G for 0<t<T. If spanlaip, ariar2, ¢112a12,...] C Ker(azy) then Cqy = 0 and

) C1A1Co = 0. Similarly CpdpCy = 0. For the converse, let w be in

.Ej spanlaip, aj1e12, @112212,...] and choose v so that w = [A1CovI(T). If

i

C1A1C2 = O then Cqy = O with y = AqCpv. It follows that apqy(t) = O for 0T

and hence w belongs to Ker(as1).
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For example if

1 a 0 o
a1 = @22 = and a1z = a2 =
‘ 0o 1 1 0

then the system (1) is stably connected.

This characterization of stably connected components is similar to
gecmetric conditions that arise in disturbance deccupling problems, see Wonham
(1985). In fact, disturbance decoupling methods can be used to modify certain
systems of the form (1) through local feedback so that the resulting two
components system is stably connected.

Let A:RP»RM, B:RM+RD pe linear transformations. With notation as in Wonham
(1985), a subspace V of RR is called A-B invariant if there is a linear
transformation F:RP+R® such that (A+BF)Y C V. For a subspace K of R, T(4a,B,K)
is the set of all A-B invariant subspaces which are alsg subspaces of K. The
notation V* = supT(4,B,K) denotes the element of T(A,B,K) which contains all
other elements of T(A,B,K). The following remark is a restatement of the
solution to the disturbance decoupling problem.

Remark. If Im(aqip) C sup (a11,B81,Ker(azi)) and Im(apq1)C

sup T(a22,82,Ker(aq2)) then there exist matrices Fqy, F, such that .the two

component system

dh{/dt = (a11+81F1)hy + ajohs + Bquq
dhpo/dt = azthy + (apo*8oF2)hy + Bous
is stably connected.

Use of high gain, local feedback loops to reject interconnections and to

aid in the sythesis of decentralized control laws has been reported in the work

of Young (1983), (1985).
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III. DECOMPQSITICN

For the system (2) consider the problem of choosing controls uy, ujz,
independently, which steer the system frcm a given initial position to a desired
terainal position. In this sectiqn a method to decompose the control problem
fcr (2) into a problem for a two ccmponent system of the form (1)is presented.
The approach uses standard methods to deccmpose systems of the form (2) into
block triangular form. Deccmposition of (2) into block triangular form using
controllability subspaces or strong components provides a gecmetric view of
control coordination possibilities.

Let F = (Fjj), G1 = (G133) and G2 = (G2;j) denote nxn, nxm, nxr matrices
with respect to the standard basis for X = R? and let the components of x, uj,
u; be denoted by x = col(xq,...,Xp), Uy = col(uqq,...,U1y), and uy =
Col(Usq,eas,rlUop). N

Controllable Canonical Form. A coordinatization of tne basic controllable

cancnical fora, introduced by Xalman, Ho, and Narendra (1961) will be presented,
see also Wonham (1985).

Assuming (2) is controllablz, let Yi denote the controllability subspace
determined by the pair (F,Gj) i=1,2. Controllability implies X -'§1+§2. ir
k3 = ¥1F\§é then either X3 = {0}, X3 - Y1, X3 -‘YZ, or X3 is a proper nontrivial

subspace'§1 and ?é. In any case there exist subspaces X¢ and X3 such that

Ty =Xy X3, X=Xz X3and X = X; Xz X3.

With respect to the standard basis, let W; dencte a matrix whose columns
form a basis for Xj, 1=1,2,3 and let P be the nxn matrix defined by
P = [W{,Wa,W3]. Since X1, X3, and X3 are A invariant the change of coordinates
x = Ph leads to the controllable canonical form

dh/dt = ah + 8quy + Boup (1)

8
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2 A31 A32 A33 813 234
»,\‘{

with a = PT'FP, By = PT1GT and 8, = P~'G2.
Here the subsystenms detérmined by A1¢, B1t1 and App, Boo are controllable
whereas the system deteramined by the pair A33, (813,323) need not be
~controllable, see Wonham (1985), as the example |

0 0 © 1 0 ]

|
aQ = 0 Q 0, B1 =101, Bo = |1 l
1 1 1 . 0 0

illustrates.

Numerical computation of controllability subspaces using recent advances in
numerical linear algebra is considered in the work of Klema and Laub (1980), Van
Dooren (1981), Boley (1981).

Block Triangular Foram. Transformation of (2) into block triangular form

can be achieved by graph theoretic methods, see Siljak (1978), Pichai, - et.
al. (1983) or Michel et. al. (1978). Let D = {V,E| be the directed graph with
vertex set V = SUC{UC, where S = {xq,...,xp}, C1 = {uyq,...usp}, Co =
{uzy,...upr] and edge set E = {(x;,xj):a55=0} U {(u1y,x5):G155=0} U
{(ugi,xj):czjiao}. A subgraph D = {V ,E } of D is called a strong component
provided for each pair of vertices x;, Xj in V there is a directed path from xj
to X3 with each edge in E and V is maximal with respect to this property. Let
Di'- {Vi,Ei}. i-1,...m denote the strong components of D. Clearly VLF\VJ -

a2, sir\sj = @ for {=j and ¥V -kf§.1 Ej. The condensation graph CD =

{CV,CE} has o vertices, one associated with each strong component, say vi-~Di,

and an edge from vy to vj if and only if there is a u in V{ and a v in VJ such
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that (u,v) is in E. The condensation graph determines a relabeling of indicies
in (2) so that the resulting system matrix {s block lower triangular. Hence,
he system {s decocmposed into a "hierachy of m interconnected components". Let
Sy = {Dy: for scme i there is a path in the condensation graph frcm uij to Dk}.
Similary define Sp. Let S3 = Sy Sp and S1 = $1=53, Sz = S=83. Then Sy,

Sz, S3 determine a relabeling of vertices so that (2) is of the fera (7) with

A7 0 O 811 0
e =] 0 Axs O 8y = | O B2 = | Boo
A31 A3z A33 813 B23J.

Control Problem Deccmpesition. Controls uy and ug steer the solution of (2)

rcm x(0) = Xg to x(T) = xp 12 and only if uy, up steer the solution of (7) frecm
n(0) = hg to h(T) = hr where hg = Pxg, hy = Pxy if (7) arises from the
controllable cancnical form or the components of hg, hr are obtained from those
of Xg, XT by using ﬁhe permutation of indices which determines the block lower

triangular form. To further decompose the problem let 0 < mg,my,mp < 1,

hoq b4
hig = 0 hyp = 0
(1-mg)ng3 (1~mg)brs _
0 0
hzo = ho2 hpr = hr2
moho3 BONT3

and consider the following two control problems.
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CCNTACL PRCBLEM I. Find uy which steers the solution of

Ay O 0 0 0 o 34
dhy/dt = 0 o] 0 hy + m> 0 0 0 hp +10 [uy (7.1)
(1-m1)A31 0 (1-m1)A33 0 A3p A3z 83

frem hy(0) = hyg to hy(T) = hit.

! . ;
CCNTRCL PRCBLEM II. Fing us, which steers the solution of

c 0 0 0 0] Q Q
dhy/dt = m1 | 0 O 0 Jny +}0 Aop 0 ho + | Ba|us  (7.2) !
i
A31 0 A33 0 (1—m2)A32 (1-m2)A33 83 ‘

frem hy(0) = hpg to ha(T) = hor.

™

Here (7.1) and (7.2) are of the form (1). Let uj and up solve CONTROL
PROBLEMS I, II respectively. Notice that the second component of hy and the !
first component of hp are always zero. It follows that h = hy+h, satisfies (7)
and n(0) = hg, h(T) = hp. That is u; and up steer the solution of (7) frem
n(0) = hg to h(T) = hr.

Clearly if mq=0 or mp=0 then the components in (7.1), (7.2) are stably

connected.

THECREM 4, The two components of (7.1), (7.2) with m; and my non-zero are

stably connected if and only if A33A37 = 0, A33A32 = 0, and A332

With notation as in (7.1), (7.2) the controllability subspace determined by

(a11,a12) is spanned by the columns of the matrix
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A vector x = col(xy,xp,x3) is in the Ker(apy) if and only if A3qyxq+A33x3 = Q.
' Clearly the columns of the above matrix lie in the Ker(apq) if and only if
5 A33432 = Q and A332 = 0. Similarly, the controlability subspace deteramined by
é (ap2,221) lies in the Ker(aj2) if and only if A33A3; = O and A332 = 0. The
i result follows frcm Theorem 2. .

With notation as in (1). Theorem 4 implies that the components in (7.1),

p (7.2) are stably connected if and only if apjaip = O and ajpany = O.

IV. INTZRCONNECTED HIZRARCHIES.
Graphic theoretic conditions for (1) to be stably connected are presented
in the case a4qq7 and app have a hierarchial structure. Assume
N arr = (a11513)1, j=1,...n and a2 = (@22,13)5, j=1,...,1 With a1y,1;=0 and
a22,ij= 0 for i>j. Let ajz = (a12,1j) and apy = (ap7,ij) denote mxn, nxm
matrices, respectivley. With notaﬁion as in Section I1I the system directed
graph D=(V,E) may be described as follows V = VqiUVp = [X11,.-,X1g} U
{x21,...x21} and E = {(X1i,X1j): an,jiaO} [®; {(xu,xaj): @21 ,jiaO}U {(XZi'xU):
a12,j1a0}\J {(xzi,xzj): agg.jiao}. Such a directed graph méy be depicted as

follows:

CCMPONENT | COMPQONENT 1l
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TAECREM S. With D=(V,E) as defined above, the components in (1) are stably
connected if and only i{f there exist no directed paths with {nitial and terminal
noces in Vi which transverse a node in T3 for {i,J} - {1,2}.

To see that span{eyp, e12a12, a112e11,.04,1 C Ker(apsy) we argue that

a21a11ka12 = 0 fer k=0, 1,...,2~1. The product apjaiz = 0 since there are no
ES; directed paths of length two with initial and terminal ncdes in V) which
- transverse a node in Vy. The product aziajijaip = 0 since there are no directed
paths of length three with initial and terminal nodes in V, which transverse two
nodes in Vy. Similarly u21a11ku12 = 0 for k=0,1,...,n~1.

Thecrem ¥ generalizes to the case where Dy = (Vq,E¢) and Dy = (V5,Ep)
represent the condensation graphs determined by aq1 and aps respectively. Here
@11, app are block triangular, and a1, apy are partitioned accordingly.
CONCLUDING REMARK

A large sScale system with multiple components is said to be stably

connectaed provided each pair of ccmponents satisfy the stably connected

condition. The decentralized control strategy presented in this paper can be
generalized to a decentralized control strategy for stably connected systems.
if a system matrix is block triangular then the blocks determine components
such that the system is stably connected. On the other hand, one may view the
ccmponents as basic building blocks and the results of this paper indicate how
to connect the ccmponents together to form more complex systems while at the
same tlme maintaining scme autonomy in the choice of component control laws

laws.
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